Contents

- Declarative Programming with Constraints
 - Motivation
 - CLPFD basics
 - How does CLPFD work
 - FDBG
 - Reified constraints
 - Global constraints
 - Labeling
 - From plain Prolog to constraints
 - Improving efficiency
 - Internal details of CLPFD
 - Disjunctions in CLPFD
 - Modeling
 - User-defined constraints (ADVANCED
 - Some further global constraints (ADVANCED)
 - Closing remarks

What else is there in SICStus Prolog?

- Further constraint libraries:
 - CLPB booleans
 - CLPQ/CLPR linear inequalities on rationals/reals
 - Constraint Handling Rules: generic constraints
- Other features
 - "Traditional" built-in predicates, e.g. sorting, input/output, exception handling, etc.
 - Powerful data structures, e.g. AVL trees, multisets, heaps, graphs, etc.
 - Definite clause grammars, an extension of context-free grammars with Prolog terms
 - Interfaces to other programming languages, e.g. C/C++, Java, .NET, Tcl/Tk
 - Integrated development environment based on Eclipse (Spider)
 - Execution profiling
 - •

Some applications of (constraint) logic programming

- Boeing Corp.: Connector Assembly Specifications Expert (CASEy) an expert system that guides shop floor personnel in the correct usage of electrical process specifications.
- Windows NT: \WINNT\SYSTEM32\NETCFG.DLL contains a small Prolog interpreter handling the rules for network configuration.
- Experian (one of the largest credit rating companies): Prolog for checking credit scores. Experian bought Prologia, the Marseille Prolog company.
- IBM bought ILOG, the developer of many constraint algorithms (e.g. that in all_distinct); ILOG develops a constraint programming / optimization framework embedded in C++.
- IBM uses Prolog in the Watson deep Question-Answer system for parsing and matching English text

Part IV

The Semantic Web

- Introduction to Logic
- 2 Declarative Programming with Prolog
- 3 Declarative Programming with Constraints
- The Semantic Web

Contents

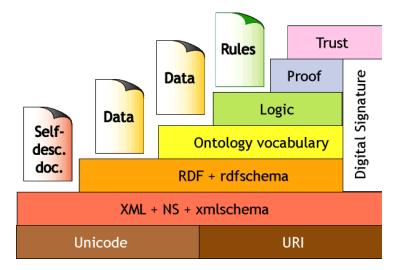
- The Semantic Web
 - Introducing Semantic Technologies
 - An example of the Semantic Web approach
 - An overview of Description Logics
 - The ALCN language family
 - TBox reasoning
 - The SHIQ language family
 - ABox reasoning
 - The tableau algorithm for ALCN a simple example
 - \bullet Further reading: the \mathcal{ALCN} tableau algorithm

Semantic Technologies

- Semantics = meaning
- Semantic Technologies = technologies building on (formalized) meaning
- Declarative Programming as a semantic technology
 - A procedure definition describes its intended meaning
 - e.g. intersect(L1, L2): member(X, L1), member(X, L2).
 Lists L1 and L2 intersect if
 there exists an X, such that X is a member of both L1 and L2.
 - The execution of a program can be viewed as a process of deduction
- The main goal of the Semantic Web (SW) approach:
 - make the information on the web processable by computers
 - machines should be able to understand the web, not only read it
- Achieving the vision of the Semantic Web
 - Add (computer processable) meta-information to the web
 - Formalize background knowledge build so called ontologies
 - Develop reasoning algorithms and tools

The vision of the Semantic Web

• The Semantic Web layer cake - Tim Berners-Lee



The Semantic Web

- The goal: making the information on the web processable by computers
- Achieving the vision of the Semantic Web
 - Add meta-information to web pages, e.g.

```
(AIT hasLocation Budapest)
(AIT hasTrack Track:Foundational-courses)
(Track:Foundational-courses hasCourse Semantic-and-declarative...)
```

- Formalise background knowledge build so called terminologies
 - hierarchies of notions, e.g.
 a University is a (subconcept of) Inst-of-higher-education,
 the hasFather relationship is a special case of hasParent
 - definitions and axioms, e.g.
 a Father is a Male Person having at least one child
- Develop reasoning algorithms and tools
- Main topics
 - Description Logic, the maths behind the Semantic Web is the basis of Web Ontology Languages OWL 1 & 2 (W3C standards)
 - A glimpse at reasoning algorithms for Description Logic

Contents

- The Semantic Web
 - Introducing Semantic Technologies
 - An example of the Semantic Web approach
 - An overview of Description Logics
 - The \mathcal{ALCN} language family
 - TBox reasoning
 - The SHIQ language family
 - ABox reasoning
 - The tableau algorithm for ALCN a simple example
 - \bullet Further reading: the \mathcal{ALCN} tableau algorithm

First Order Logic

Syntax:

- non-logical ("user-defined") symbols: predicates and functions, including constants (function symbols with 0 arguments)
- terms (refer to individual elements of the universe, or interpretation),
 e.g. fatherOf(Susan)
- formulas (that hold or do not hold in a given interpretation), e.g. $\varphi = \forall x. (Optimist(fatherOf(x)) \rightarrow Optimist(x))$

Semantics:

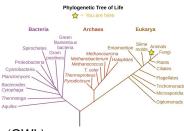
- determines if a closed formula φ is true in an interpretation \mathcal{I} : $\mathcal{I} \models \varphi$ (also read as: \mathcal{I} is a model of φ)
- an interpretation *T* consists of a domain Δ and a mapping from non-logical symbols (e.g. *Optimist*, *fatherOf*, *Susan*) to their meaning
- semantic consequence: $S \models \alpha$ means: if an interpretation is a model of all formulas in the set S, then it is also a model of α (note that the symbol \models is overloaded)
- Deductive system (also called proof procedure):
 an algorithm to deduce a consequence α of a set of formulas S: S ⊢ α
 example: resolution
 - <□ > < □ >

Soundness, completeness and decidability

- Let α denote a single FOL statement, and S a set of statements
- A deductive system is **sound** if $S \vdash \alpha$ implies $S \models \alpha$ (deduces only truths).
- A deductive system is **complete** if $S \models \alpha$ implies $S \vdash \alpha$ (deduces all truths).
- Kurt Gödel's original completeness theorem states that, given soundness, " $\models \implies \vdash$ " holds: if α is true in all interpretations that satisfy S, i.e. if for all interpretations \mathcal{I} s.t. $\mathcal{I} \models S$, $\mathcal{I} \models \alpha$ also holds, then $S \vdash \alpha$, i.e. α can be deduced from S
- The inverse statement " $\vdash \Longrightarrow \models$ " is trivially true, resulting in " $\models \equiv \vdash$ ", cf.
 - Association for Logic Programming
- FOL is not decidable: there is no decision procedure for the question "does S imply α ($S \vdash \alpha$)?" (Gödel's completeness theorem ensures that if the answer is "yes", then there exists a proof of α from S; but if the answer is "no", we have no guarantees this is called semi-decidability)
- Developers of the Semantic Web strive for using decidable languages, i.e. for languages with a sound and complete proof procedure
- Semantic Web languages are based on Description Logics, which are decidable sublanguages of FOL, i.e. there is an algorithm that delivers a yes or no answer to the question "does S imply α ?"

Ontologies

- Ontology: computer processable description of knowledge
- Early ontologies include classification system (biology, medicine, books)



- Entities in the Web Ontology Language (OWL):
 - classes describe sets of objects (e.g. optimists)
 - properties (attributes, slots) describe binary relationships (e.g. has parent)
 - objects correspond to real life objects
 (e.g. people, such as Susan, her parents, etc.)

Knowledge Representation

- Natural Language:
 - Someone having a non-optimist friend is bound to be an optimist.
 - Susan has herself as a friend.
- First order Logic (unary predicate, binary predicate, constant):
 - \bigcirc $\forall x.(\exists y.(\mathsf{hasFriend}(x,y) \land \neg \mathsf{opt}(y)) \rightarrow \mathsf{opt}(x))$
 - hasFriend(Susan, Susan)
- Description Logics (concept, role, individual):

 - hasFriend(Susan, Susan)

(role assertion)

- Web Ontology Language (Manchester syntax)⁵ (class, property, object):
 - (hasFriend some (not Opt)) SubClassOf: Opt
 Those having some not Opt friends must be Opt

(GCI – Gen. Class Inclusion axiom)

a hasFriend(Susan, Susan)

(object property assertion)

 $^{^{5}}$ protegeproject.github.io/protege/class-expression-syntax

A sample ontology to be entered into Protégé

- There is a class of Animals, some of which are Male, some are Female.
- No one can be both Male and Female.
- Every Human is an Animal.
- Every Optimist is a Human.
- There is a relationship hasP meaning "has parent". Relations hasFather and hasMother are sub-relations (special cases) of hasP.
- Let's define the class C1 as those who have an optimistic parent.
- State that everyone belonging to C1 is Optimistic.
- State directly that anyone having an Optimistic parent is Optimistic.
- There is a relation hasF, denoting "has friend". State that someone having a non-Optimistic friend must be Optimistic.
- There are individuals: Susan, and her parents Mother and Father.
- Mother has Father as her friend.

The sample ontology in Description Logic and OWL/Protégé

	English	Description Logic	OWL (Manchester syntax)
1	Male is a subclass of Animal.	Male ⊑ Animal	Male SubClassOf: Animal
	Female is a subclass of Animal.	Female ⊑ Animal	Female SubClassOf: Animal
2	Male and Female are disjoint.	Male ⊑ ¬ Female	Male DisjointWith: Female
3	Human is a subclass of Animal.	Human ⊑ Animal	Human SubClassOf: Animal
4	Optimist is a subclass of Human.	Opt ⊑ Human	Opt SubClassOf: Human
5	hasFather is a subprop. of hasP.	hasFather ⊑ hasP	hasFather SubPropertyOf: hasP
	hasMother is a subprop. of hasP.	hasMother ⊑ hasP	hasMother SubPropertyOf: hasP
6	C1 = those having an Opt parent.	$C1 \equiv \exists hasP . Opt$	C1 EquivalentTo: hasP some Opt
7	Everyone in C1 is Opt.	C1 ⊑ Opt	C1 SubClassOf: Opt
8	Children of Opt parents are Opt.	\exists hasP . Opt \sqsubseteq Opt	hasP some Opt SubClassOf: Opt
9	Those with a non-Opt friend are Opt.	∃ hasF . ¬Opt ⊑ Opt	hasF some not Opt SubClassOf: Opt
10	Susan has parents Mother and	hasP(Susan, Mother)	hasP(Susan, Mother)
	Father.	hasP(Susan, Father)	hasP(Susan, Father)
1	Mother has Father as a friend.	hasF(Mother, Father)	hasF(Mother, Father)

(In Protégé, select the "save as" format as "Latex syntax" to obtain DL notation.)

Contents

- The Semantic Web
 - Introducing Semantic Technologies
 - An example of the Semantic Web approach
 - An overview of Description Logics
 - The ALCN language family
 - TBox reasoning
 - The SHIQ language family
 - ABox reasoning
 - The tableau algorithm for ALCN a simple example
 - \bullet Further reading: the \mathcal{ALCN} tableau algorithm

Description Logic (DLs) - overview

DL is a subset of FOL, providing the maths background of OWL

- Signature relation and function symbols allowed in DL
 - concept name (A) unary predicate symbol (cf. OWL class)
 - role name (R) binary predicate symbol (cf. OWL property)
 - individual name (a,...) constant symbol (cf. OWL object)
 - No non-constant function symbols, no preds of arity > 2, no vars
- Concept names and concept expressions represent sets, e.g.
 ∃hasParent.Optimist the set of those who have an optimist parent
- Terminological axioms (TBox) state background knowledge
 - A simple axiom using the DL language ALE:
 ∃hasParent.Optimist
 □ Optimist
 − the set of those who have an optimist parent is a subset of the set of optimists
 - Translation to FOL: $\forall x. (\exists y. (hasP(x,y) \land Opt(y)) \rightarrow Opt(x))$
- Assertions (ABox) state facts about individual names
 - Example: Optimist(JACOB), hasParent(JOSEPH, JACOB)
- A consequence of these TBox and ABox axioms is: Optimist(JOSEPH)
- DLs behind OWL 1 and OWL 2 are decidable: there are bounded time algorithms for checking if a set of axioms implies a statement.

Some further examples of terminological axioms

(1) A Mother is a Person, who is a Female and who has(a)Child.

Mother = Person \square Female \square \exists hasChild. \top

(2) A Tiger is a Mammal.

(3) All children of an Optimist are Optimists, too.

(alternatively:) ∃hasParent.Opt □ Opt

(4) Childless people are Happy.

 \forall hasChild. $\bot \sqcap$ Person \sqsubseteq Happy

(5) Those in the relation has Child are also in the relation has Descendant.

hasChild □ hasDescendant

(6) The relation hasParent is the inverse of the relation hasChild.

hasParent=hasChild=

(7) The hasDescendant relationship is transitive.

Trans(hasDescendant)

Description Logics – why the plural?

- These logic variants were progressively developed in the last two decades
- As new constructs were proved to be "safe", i.e. keeping the logic decidable, these were added
- We will start with the very simple language AL, extend it to ALE, ALU
 and ALC
- As a side branch we then define ALCN
- We then go back to \mathcal{ALC} and extend it to languages \mathcal{S} , \mathcal{SH} , \mathcal{SHI} and \mathcal{SHIQ} (which encompasses \mathcal{ALCN})
- We briefly tackle further extensions \mathcal{O} , (**D**) and \mathcal{R}
- OWL 1, published in 2004, corresponds to $\mathcal{SHOIN}(\mathbf{D})$
- OWL 2, published in 2012, corresponds to SROTQ(D)

Contents

- The Semantic Web
 - Introducing Semantic Technologies
 - An example of the Semantic Web approach
 - An overview of Description Logics
 - The \mathcal{ALCN} language family
 - TBox reasoning
 - The SHIQ language family
 - ABox reasoning
 - The tableau algorithm for ALCN a simple example
 - \bullet Further reading: the \mathcal{ALCN} tableau algorithm

Overview of the \mathcal{ALCN} language

- In ALCN a statement (axiom) can be
- In general, an \mathcal{ALCN} axiom can take these two forms:
 - subsumption: $C \sqsubseteq D$
 - equivalence: $C \equiv D$, where C and D are concept expressions
- A concept expression C denotes a set of objects
 (a subset of the Δ universe of the interpretation), and can be:
 - an atomic concept (or concept name), e.g. Tiger, Female, Person
 - a composite concept, e.g. Female □ Person, ∃hasChild.Female
 - composite concepts are built from atomic concepts and atomic roles (also called role names) using some constructors (e.g. □, ⊔, ∃, etc.)
- We first introduce language \mathcal{AL} , that allows a minimal set of constructors (all examples on this page are valid \mathcal{AL} concept expressions)
- Next, we discuss richer extensions named \mathcal{U} , \mathcal{E} , \mathcal{C} , \mathcal{N}

The syntax of the \mathcal{AL} language

Language \mathcal{AL} (Attributive Language) allows the following concept expressions, also called concepts, for short:

A is an atomic concept, C, D are arbitrary (possibly composite) concepts R is an atomic role

DL concept	OWL class	Name	Informal definition	
Α	A (class name)	atomic concept	those in A	
Т	owl:Thing	top	the set of all objects	
	owl:Nothing	bottom	the empty set	
$\neg A$	not A	atomic negation	those not in A	
$C \sqcap D$	C and D	intersection	those in both C and D	
∀R.C	R only C	value restriction	those whose all R s belong to C	
∃ <i>R</i> .⊤	R some owl:Thing	limited exist. restr.	those having at least one R	

Examples of AL concept expressions:

Person □ ¬Female
Person □ ∀hasChild.Female
Person □ ∃hasChild.T

Person and not Female

Person and (hasChild only Female)

Person and (hasChild some owl:Thing)

The semantics of the AL language (as a special case of FOL)

- An interpretation \mathcal{I} is a mapping:
 - $\Delta^{\mathcal{I}} = \Delta$ is the universe, the **nonempty** set of all individuals/objects
 - for each concept/class name A, $A_{\underline{}}^{\mathcal{I}}$ is a (possibly empty) subset of Δ
 - for each role/property name R, $R^{\mathcal{I}} \subseteq \Delta \times \Delta$ is a binary relation on Δ
- The semantics of \mathcal{AL} extends \mathcal{I} to composite concept expressions, i.e. describes how to "calculate" the meaning of arbitrary concept exprs:

$$\begin{array}{rcl}
\top^{\mathcal{I}} &=& \Delta \\
\bot^{\mathcal{I}} &=& \emptyset \\
(\neg A)^{\mathcal{I}} &=& \Delta \setminus A^{\mathcal{I}} \\
(C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(\forall R.C)^{\mathcal{I}} &=& \{a \in \Delta | \forall b. (\langle a,b \rangle \in R^{\mathcal{I}} \to b \in C^{\mathcal{I}})\} \\
(\exists R.\top)^{\mathcal{I}} &=& \{a \in \Delta | \exists b. \langle a,b \rangle \in R^{\mathcal{I}}\}
\end{array}$$

• Finally we define how to obtain the truth value of an axiom:

$$\mathcal{I} \models C \sqsubseteq D$$
 iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
 $\mathcal{I} \models C \equiv D$ iff $C^{\mathcal{I}} = D^{\mathcal{I}}$

A simple AL example

• An example TBox \mathcal{T} {
 FatherOfGirls \equiv Person $\sqcap \neg$ Woman $\sqcap \forall$ hasChild.Woman $\sqcap \exists$ hasChild. \top ,
 FatherOfGirls \sqsubseteq Happy
}

• The First Order Logic (FOL) equivalent of the above TBox:

```
\forall x. (\mathsf{FatherOfGirls}(x) \leftrightarrow \mathsf{Person}(x) \land \neg \mathsf{Woman}(x) \land \\ \forall y. (\mathsf{hasChild}(x,y) \to \mathsf{Woman}(y)) \land \exists y. \mathsf{hasChild}(x,y)) \land \\ \forall x. (\mathsf{FatherOfGirls}(x) \to \mathsf{Happy}(x))
```

The \mathcal{AL} language: limitations

Recall the elements of the language AL:

DL concept	OWL class	Name	Informal definition	
Α	A (class name)	atomic concept	those in A	
Т	owl:Thing	top	the set of all objects	
	owl:Nothing	bottom	the empty set	
$\neg A$	not A	atomic negation	those not in A	
$C \sqcap D$	C and D	intersection	those in both C and D	
∀R.C	R only C	value restriction	those whose all R s belong to C	
$\exists R. \top$ R some owl: Thing		limited exist. restr.	those having at least one R	

What is missing from AL?

- We can specify the intersection of two concepts, but not the union, e.g. those who are either blue-eyed or tall.
- ∃R.⊤ we cannot describe e.g. those having a female child.
 Remedy: allow for full exist. restr., e.g. ∃hasCh. Female
- $\neg A$ negation can be applied to atomic concepts only. Remedy: full negation, $\neg C$, where C can be non-atomic, e.g. $\neg (U \sqcap V)$

The \mathcal{ALCN} language family: extensions \mathcal{U} , \mathcal{E} , \mathcal{C} , \mathcal{N}

Further concept constructors, OWL equivalents shown in [square brackets]:

- Full existential restriction: ∃R.C, [R some C]
 those who have at least one R belonging to C
 - $(\exists R.C)^{\mathcal{I}} = \{ a \in \Delta^{\mathcal{I}} | \exists b. \langle a, b \rangle \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}} \}$ (E)
- (Full) negation: $\neg C$, [not C] those who do not belong to C $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \tag{\mathcal{C}}$
- Unqualified number restrictions: $(\leq nR)$, $[R \max n \text{ owl:Thing}]$ and $(\geq nR)$, $[R \min n \text{ owl:Thing}]$
 - those who have at most/at least n R-related objects

$$(\leqslant nR)^{\mathcal{I}} = \left\{ a \in \Delta^{\mathcal{I}} \mid | \left\{ b \mid \langle a, b \rangle \in R^{\mathcal{I}} \right\} \mid \le n \right\}$$

$$(\geqslant nR)^{\mathcal{I}} = \left\{ a \in \Delta^{\mathcal{I}} \mid | \left\{ b \mid \langle a, b \rangle \in R^{\mathcal{I}} \right\} \mid \ge n \right\}$$

$$(\mathcal{N})$$

Example: Person \sqcap ((\leqslant 1 hasCh) \sqcup (\geqslant 3 hasCh)) \sqcap \exists hasCh.Female Person and (hasCh max 1 or hasCh min 3) and (hasCh some Female)

Note that qualified number restrictions, e.g., "those having at least 3 blue-eyed children" are not covered by the extension \mathcal{N} .

Summary table of the \mathcal{ALCUEN} language

DL	OWL	Name	Informal definition	
Α	Α	atomic concept	those in A	AL
$\neg A$	not A	atomic negation	those not in A (cf. C)	AL
T	owl:Thing	top	the set of all objects	AL
	owl:Nothing	bottom	the empty set	AL
$C \sqcap D$	C and D	intersection	those in both C and D	AL
∃ <i>R</i> .⊤	R some	existential restr.	those having an R (cf. \mathcal{E})	AL
∀R.C	R only C	value restriction	those whose all R s belong to C	AL
$\neg C$	not C	full negation	those not in C	\mathcal{C}
$C \sqcup D$	C or D	union	those in either C or D	\mathcal{U}
∃R.C	R some C	existential restr.	those with an R belonging to C	\mathcal{E}
(<i>≤ nR</i>)	$R \max n o:T$	unq. numb. restr.	those having at most <i>n R</i> s	\mathcal{N}
(<i>≽</i> nR)	$R \min n o:T$	unq. numb. restr.	those having at least <i>n R</i> s	\mathcal{N}

Rewriting \mathcal{ALCN} to first order logic

Concept expressions map to predicates with one argument, e.g.

```
\begin{array}{ll} \text{Tiger} \Longrightarrow \text{Tiger}(x) & \text{Mammal} \Longrightarrow \text{Mammal}(x) \\ \text{Person} \Longrightarrow \text{Person}(x) & \text{Female} \Longrightarrow \text{Female}(x) \end{array}
```

Simple connectives □, □, ¬ map to boolean operations ∧, ∨, ¬, e.g.
 Person □ Female ⇒ Person(x) ∧ Female(x)

```
Person \sqcup \neg Mammal \Longrightarrow Person(x) \lor \neg Mammal(x)
```

- An axiom $C \sqsubseteq D$ is rewritten as $\forall x.(C(x) \rightarrow D(x))$, e.g. Tiger $\sqsubseteq \text{Mammal} \Longrightarrow \forall x.(\text{Tiger}(x) \rightarrow \text{Mammal}(x))$
- An axiom $C \equiv D$ is rewritten as $\forall x.(C(x) \leftrightarrow D(x))$, e.g. Woman $\equiv \mathsf{Person} \cap \mathsf{Female} \Longrightarrow \forall x.(Woman(x) \leftrightarrow \mathsf{Person}(x) \wedge \mathsf{Female}(x))$
- Concept constructors involving a quantifier ∃ or ∀ are rewritten to an appropriate quantified formula, where a role name is mapped to a binary predicate (a predicate with two arguments), e.g.

```
\exists \mathsf{hasParent.Opt} \sqsubseteq \mathsf{Opt} \Longrightarrow \forall x. (\exists y. (\mathsf{hasParent}(x, y) \land \mathsf{Opt}(y)) \to \mathsf{Opt}(x))
```

Rewriting \mathcal{ALCN} to first order logic, example

- Consider $C = \text{Person} \sqcap ((\leqslant 1 \text{ hasCh}) \sqcup (\geqslant 3 \text{ hasCh})) \sqcap \exists \text{hasCh.Female}$
- Let's outline a predicate C(x) which is true when x belongs to concept C: $C(x) \leftrightarrow Person(x) \land \\ (hasAtMost1Child(x) \lor hasAtLeast3Children(x)) \land \\ hasFemaleChild(x)$
- Class practice:
 - Define the FOL predicates hasAtMost1 Child(x), hasAtLeast3 Children(x), hasFemaleChild(x)
 - Additionally, define the following FOL predicates:

 - hasAtMost2Children(x), corresponding to the concept (≤ 2 hasCh)

General rewrite rules $\mathcal{ALCN} \rightarrow \mathsf{FOL}$

Each concept expression can be mapped to a FOL formula:

- Each concept expression C is mapped to a formula $\Phi_C(x)$ (expressing that x belongs to C).
- Atomic concepts (A) and roles (R) are mapped to unary and binary predicates A(x), R(x, y).
- \sqcap , \sqcup , and \neg are transformed to their counterpart in FOL (\land, \lor, \neg) , e.g. $\Phi_{C\sqcap D}(x) = \Phi_C(x) \land \Phi_D(x)$
- Mapping further concept constructors:

$$\Phi_{\exists R.C}(x) = \exists y. (R(x,y) \land \Phi_C(y))
\Phi_{\forall R.C}(x) = \forall y. (R(x,y) \to \Phi_C(y))
\Phi_{\geqslant nR}(x) = \exists y_1, \dots, y_n. \left(R(x,y_1) \land \dots \land R(x,y_n) \land \bigwedge_{i < j} y_i \neq y_j \right)
\Phi_{\leqslant nR}(x) = \forall y_1, \dots, y_{n+1}. \left(R(x,y_1) \land \dots \land R(x,y_{n+1}) \to \bigvee_{i < j} y_i = y_j \right)$$

Equivalent languages in the \mathcal{ALCN} family

- Language AL can be extended by arbitrarily choosing whether to add each of UECN, resulting in AL[U][E][C][N].
 Do these 2⁴ = 16 languages have different expressive power?
 Two concept expressions are said to be equivalent, if they have the same
 - meaning, in all interpretations. Languages \mathcal{L}_1 and \mathcal{L}_2 have the same expressive power ($\mathcal{L}_1 \stackrel{e}{=} \mathcal{L}_2$), if any expression of \mathcal{L}_1 can be mapped into an equivalent expression of \mathcal{L}_2 , and
- vice versa.
 As a preparation for discussing the above let us recall that these axioms hold in all models, for arbitrary concepts C and D and role R:

$$C \sqcup D \equiv \neg(\neg C \sqcap \neg D) \qquad \neg \neg C \equiv C$$

$$\exists R.C \equiv \neg \forall R.\neg C \qquad \neg \top \equiv \bot$$

$$\neg \bot \equiv \top$$

$$\neg(C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg \exists R.\top \equiv \forall R.\bot$$

$$\neg \forall R.C \equiv \exists R.\neg C$$

Equivalent languages in the \mathcal{ALCN} family

Let us show that \mathcal{ALUE} and \mathcal{ALC} are equivalent:

- As $C \sqcup D \equiv \neg (\neg C \sqcap \neg D)$ and $\exists R.C \equiv \neg \forall R.\neg C$, union and full existential restriction can be eliminated by using (full) negation. That is, to each \mathcal{ALUE} concept expression there exists an equivalent \mathcal{ALC} expression.
- The other way, each \mathcal{ALC} concept can be transformed to an equivalent \mathcal{ALUE} expression, by moving negation inwards, until before atomic concepts, and removing double negation; using the axioms from the right hand column on the previous slide
- \bullet Thus \mathcal{ALUE} and \mathcal{ALC} have the same expressive power, and so have the intermediate languages:

$$\mathcal{ALC}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCU}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCE}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALCUE}(\mathcal{N}) \stackrel{e}{=} \mathcal{ALUE}(\mathcal{N}).$$

Further remarks:

- As $\mathcal U$ and $\mathcal E$ is subsumed by $\mathcal C$, we will use $\mathcal A\mathcal L\mathcal C$ to denote the language allowing $\mathcal U$, $\mathcal E$ and $\mathcal C$
- It can be shown that any two of AL, ALU, ALE, ALC, ALN, ALUN, ALEN, ALCN have different expressive power

Another \mathcal{ALC} example requiring case analysis

• Some facts about the Oedipus family (ABox A_{OE}):

```
hasChild(IOCASTE,OEDIPUS)
hasChild(IOCASTE,POLYNEIKES)
hasChild(OEDIPUS,POLYNEIKES)
hasChild(POLYNEIKES,THERSANDROS)
Patricide(OEDIPUS)
(¬Patricide)(THERSANDROS)
```

 Let us call a person "special" if they have a child who is a patricide and who, in turn, has a child who is not a patricide:

```
Special ≡ ∃hasChild.(Patricide □ ∃hasChild.¬Patricide)
```

- Let TBox \mathcal{T}_{OE} contain the above axiom only.
- Consider the instance check "Is locaste special?": $A_{OE} \models_{\mathcal{T}_{OE}} Special(IOCASTE)$?
- The answer is "yes", but proving this requires case analysis

Contents

- The Semantic Web
 - Introducing Semantic Technologies
 - An example of the Semantic Web approach
 - An overview of Description Logics
 - The \mathcal{ALCN} language family
 - TBox reasoning
 - The SHIQ language family
 - ABox reasoning
 - The tableau algorithm for ALCN a simple example
 - \bullet Further reading: the \mathcal{ALCN} tableau algorithm

A special case of ontology: definitional TBox

• T_{fam} : a sample definitional TBox for family relationships

Woman ≡ Person □ Female

Man ≡ Person ¬ ¬Woman

Mother ≡ Woman □ ∃hasChild.Person

Father ≡ Man □ ∃hasChild.Person

Parent \equiv Father \sqcup Mother

Grandmother ≡ Woman □ ∃hasChild.Parent

- A TBox is definitional if it contains equivalence axioms only, where the left hand sides are distinct concept names (atomic concepts)
- The concepts on the left hand sides are called name symbols
- The remaining atomic concepts are called base symbols, e.g. in our example the two base symbols are Person and Female.
- In a definitional TBox the meanings of name symbols can be obtained by evaluating the right hand side of their definition

Interpretations and semantic consequence

Recall the definition of assigning a truth value to TBox axioms in an interpretation \mathcal{I} :

$$\mathcal{I} \models C \sqsubseteq D \quad \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$
$$\mathcal{I} \models C \equiv D \quad \text{iff} \quad C^{\mathcal{I}} = D^{\mathcal{I}}$$

Based on this we introduce the notion of "semantic consequence" exactly in the same way as for FOL

- We can naturally extend the above $\mathcal{I} \models \alpha$ notation
 - where α is an axiom of the form $C \sqsubseteq D$ or $C \equiv D$ to a TBox (i.e. a set of α axioms) \mathcal{T}
 - $\mathcal{I} \models \mathcal{T}$ (\mathcal{I} satisfies \mathcal{T}, \mathcal{I} is a model of \mathcal{T}) iff for each $\alpha \in \mathcal{T}, \mathcal{I} \models \alpha$, i.e. \mathcal{I} is a model of α
- We now overload even further the " \models " symbol: $\mathcal{T} \models \alpha$ (read axiom α is a semantic consequence of the TBox \mathcal{T}) iff
 - all models of \mathcal{T} are also models of α , i.e.
 - for all interpretations \mathcal{I} , if $\mathcal{I} \models \mathcal{T}$ holds, then $\mathcal{I} \models \alpha$ also holds

TBox reasoning tasks

Reasoning tasks on TBoxes only (i.e. no ABoxes involved)

- A base assumption: the TBox is consistent (does not contain a contradiction), i.e. it has a model
- Subsumption: concept C is subsumed by concept D wrt. a TBox \mathcal{T} , iff $\mathcal{T} \models (C \sqsubseteq D)$, i.e. $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds in all \mathcal{I} models of \mathcal{T} ($C \sqsubseteq_{\mathcal{T}} D$) e.g. $\mathcal{T}_{fam} \models (Grandmother \sqsubseteq Parent)$ (recall that \mathcal{T}_{fam} is the family TBox)
- **Equivalence**: concepts C and D are equivalent wrt. a TBox T, iff $T \models (C \equiv D)$, i.e. $C^{\mathcal{I}} = D^{\mathcal{I}}$ holds in all \mathcal{I} models of T ($C \equiv_{\mathcal{T}} D$). e.g. $\mathcal{T}_{tam} \models (Parent \equiv Person \sqcap \exists hasChild.Person)$
- **Disjointness**: concepts C and D are disjoint wrt. a TBox T, iff $T \models (C \sqcap D \equiv \bot)$, i.e. $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$ holds in all \mathcal{I} models of T. e.g. $\mathcal{T}_{fam} \models (\mathsf{Woman} \sqcap \mathsf{Man}) \equiv \bot$
- Note that all these tasks involve two concepts, C and D

Reducing reasoning tasks to testing satisfiability

- We now introduce a simpler, but somewhat artificial reasoning task: checking the satisfiability of a concept
- Satisfiability: a concept C is satisfiable wrt. TBox \mathcal{T} , iff there is a model \mathcal{I} of \mathcal{T} such that $C^{\mathcal{I}}$ is non-empty (hence C is non-satisfiable wrt. \mathcal{T} iff in all \mathcal{I} models of \mathcal{T} $C^{\mathcal{I}}$ is empty)
- We will reduce each of the earlier tasks to checking non-satisfiability
- E.g. to prove: Woman

 Person, let's construct a concept C that contains all counter-examples to this statement: $C = Woman \sqcap \neg Person$
- If we can prove that C has to be empty, i.e. there are no counter-examples, then we have proven the subsumption
- Assume we have a method for checking satisfiability. Other tasks can be reduced to this method (usable in ALC and above):
 - *C* is subsumed by $D \iff C \sqcap \neg D$ is not satisfiable
 - C and D are equivalent \iff $(C \sqcap \neg D) \sqcup (D \sqcap \neg C)$ is not satisfiable
 - C and D are disjoint $\iff C \sqcap D$ is not satisfiable
- In simpler languages, not supporting full negation, such as ALN, all reasoning tasks can be reduced to subsumption

Contents

- The Semantic Web
 - Introducing Semantic Technologies
 - An example of the Semantic Web approach
 - An overview of Description Logics
 - The ALCN language family
 - TBox reasoning
 - The SHIQ language family
 - ABox reasoning
 - The tableau algorithm for ALCN a simple example
 - \bullet Further reading: the \mathcal{ALCN} tableau algorithm

The \mathcal{SHIQ} Description Logic language – an overview

- Expanding the abbreviation SHIQ
 - $S \equiv ALC_{R^+}$ (language ALC extended with transitive roles), i.e. one can state that certain roles (e.g. hasAncestor) are transitive.
 - • H ≡ role hierarchies. Adds statements of the form R ⊑ S,
 e.g. if a pair of objects belongs to the hasFriend relationship, then it
 must belong to the knows relationship too: hasFriend ⊑ knows
 (could be stated in English as: everyone knows their friends)

 - $Q \equiv$ qualified number restrictions (a generalisation of \mathcal{N}): allows the use of concept expressions ($\leqslant nR.C$) and ($\geqslant nR.C$) e.g. those who have at least 3 tall children : (\geqslant 3 hasChild.Tall)

SHIQ language extensions – the details

- Language $S \equiv ALC_{R^+}$, i.e, ALC plus transitivity (cf. the index $_{R^+}$)
 - ullet Concept axioms and concept expressions same as in \mathcal{ALC}
 - An additional axiom type: **Trans**(*R*) declares role *R* to be transitive
- Extension \mathcal{H} introducing role hierarchies
 - Adds role axioms of the form R ⊆ S and R ≡ S
 (R ≡ S can be eliminated, replacing it by R ⊑ S and S ⊑ R)
 - \bullet In \mathcal{SH} it is possible describe a weak form of transitive closure:

Trans(hasDescendant) hasChild □ hasDescendant

- This means that hasDescendant is a transitive role which includes hasChild
- What we cannot express in \mathcal{SH} is that hasDescendant is the smallest such role. (This property cannot be described in FOL either.)

SHIQ language extensions – the details (2)

Extension \mathcal{I} – adding inverse roles

- Our first role constructor is -: R- is the inverse of role R
- Example: consider role axiom hasChild⁻

 = hasParent and:

```
GoodParent ≡ ∃hasChild. T □ ∀hasChild. Happy
MerryChild ≡ ∃hasParent. GoodParent
```

A consequence of the above axioms: MerryChild

Happy

Happy

• Multiple inverses can be eliminated: $(R^-)^- \equiv R, ((R^-)^-)^- \equiv R^-, \ldots$

SHIQ language extensions – the details (3)

- Extension Q qualified number restrictions generalizing extension \mathcal{N} :
 - $(\leq nR.C)$ the set of those who have at most n R-related individuals belonging to C, e.g.
 - (≤ 2hasChild.Female) those with at most 2 daughters
 - $(\ge nR.C)$ those with at least n R-related individuals belonging to C
- A role is simple if it is not transitive and does not have a transitive sub-role
- Important: roles appearing in number restrictions have to be simple.
 (This is because otherwise the decidability of the language would be lost.)
 - If the axiom Trans(hasDesc) is present, this means that role hasDesc is not simple, and so cannot be used in number restrictions
 - If we add further role axioms: hasAnc

 hasDesc

 hasBloodRelation, then hasBloodRelation is not simple, as
 - hasAnc is transitive because its inverse hasDesc is such
 - hasBloodRelation has the transitive hasAnc as its sub-role

\mathcal{SHIQ} syntax summary

Notation

- A atomic concept, C, C_i , D concept expressions
- R_A atomic role, R, R_i role expressions, R_S simple role expression, i.e. a role with no transitive sub-role

Concept expressions

DL	OWL	Name	Informal definition	
Α	Α	atomic concept	those in A	AL
Т	owl:Thing	top	the set of all objects	AL
	owl:Nothing	bottom	the empty set	AL
$C \sqcap D$	C and D	intersection	those in both C and D	\mathcal{AL}
∀R.C	R only C	value restriction	those whose all Rs belong to C	AL
$C \sqcup D$	C or D	union those in either C or D		\mathcal{U}
∃R.C	R some C	existential restr.	those with an R belonging to C	\mathcal{E}
$\neg C$	$_{\mathtt{not}}$ C	full negation	those not in C	\mathcal{C}
$(\leqslant nR_S)$	R_S max $n C$	qualif. num. restr.	those with at most $n R_S$ s in C	Q
(≥ nR _S)	R_S min n C	qualif. num. restr.	those with at least n R _S s in C	Q

SHIQ syntax summary (2)

The syntax of role expressions

$$R
ightarrow R_A$$
 atomic role (AL) R^- inverse role (\mathcal{I})

The syntax of terminological axioms

$\mathcal{T} ightarrow$	$C_1 \equiv C_2$	concept equivalence axiom	(\mathcal{AL})
	$C_1 \sqsubseteq C_2$	concept subsumption axiom	(\mathcal{AL})
	$R_1 \equiv R_2$	role equivalence axiom	(\mathcal{H})
	$R_1 \sqsubseteq R_2$	role subsumption axiom	(\mathcal{H})
į	Trans(R)	transitivity axiom	$(_{\mathcal{R}^+})$

SHIQ semantics (ADVANCED)

The semantics of concept expressions

$$\begin{array}{rcl} \top^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \\ \bot^{\mathcal{I}} &=& \emptyset \\ (\neg C)^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (C_1 \sqcap C_2)^{\mathcal{I}} &=& C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}} \\ (C_1 \sqcup C_2)^{\mathcal{I}} &=& C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid & \forall b. \langle a,b \rangle \in R^{\mathcal{I}} \rightarrow b \in C^{\mathcal{I}} \right\} \\ (\exists R.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid & \exists b. \langle a,b \rangle \in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}} \right\} \\ (\geqslant nR.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid & \left| \left\{ b \mid \langle a,b \rangle \in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}} \right\} \mid \geq n \right\} \\ (\leqslant nR.C)^{\mathcal{I}} &=& \left\{ a \in \Delta^{\mathcal{I}} \mid & \left| \left\{ b \mid \langle a,b \rangle \in R^{\mathcal{I}} \wedge b \in C^{\mathcal{I}} \right\} \mid \leq n \right\} \end{array}$$

The semantics of role expressions

$$(R^{-})^{\mathcal{I}} = \{\langle b, a \rangle \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid \langle a, b \rangle \in R^{\mathcal{I}} \}$$

SHIQ semantics (2) (ADVANCED)

The semantics of terminological axioms

• Read $\mathcal{I} \models T$ as: " \mathcal{I} satisfies axiom T" or as " \mathcal{I} is a model of T"

Negation normal form (NNF)

- Various normal forms are used in reasoning algorithms
- The tableau algorithms use NNF: only atomic negation allowed
- To obtain NNF, apply the following rules repeatedly until no subterm matching a left hand side can be found:

$$\neg \neg C \quad \rightsquigarrow \quad C$$

$$\neg (C \sqcap D) \quad \rightsquigarrow \quad \neg C \sqcup \neg D$$

$$\neg (C \sqcup D) \quad \rightsquigarrow \quad \neg C \sqcap \neg D$$

$$\neg (\exists R.C) \quad \rightsquigarrow \quad \forall R.(\neg C)$$

$$\neg (\forall R.C) \quad \rightsquigarrow \quad \exists R.(\neg C)$$

$$\neg (\leqslant nR.C) \quad \rightsquigarrow \quad (\geqslant kR.C) \text{ where } k = n+1$$

$$\neg (\geqslant 1R.C) \quad \rightsquigarrow \quad \forall R.(\neg C)$$

$$\neg (\geqslant nR.C) \quad \rightsquigarrow \quad (\leqslant kR.C) \text{ if } n > 1, \text{ where } k = n-1$$

Going beyond SHIQ – outline

- Extension O introduces nominals, i.e. concepts which can only have a single element. Example: {EUROPE} is a concept whose interpretation must contain a single element
 FullyEuropean ≡ ∀hasSite.∀hasLocation.{EUROPE}
- Extension (D): concrete domains, e.g. integers, strings etc, whose interpretation is fixed, cf. data properties in OWL
- The Web Ontology Language OWL 1 implements SHOIN(D)
- OWL 2 implements SROTQ(D)
- The main novelty in R wrt. H is the possibility to use role composition (○): hasParent ○ hasBrother = hasUncle i.e. one's parent's brother is one's uncle
- To ensure decidability, the use of role composition is seriously restricted (e.g. it is not allowed to have \equiv instead of \sqsubseteq in the above example)

Contents

- The Semantic Web
 - Introducing Semantic Technologies
 - An example of the Semantic Web approach
 - An overview of Description Logics
 - The \mathcal{ALCN} language family
 - TBox reasoning
 - The SHIQ language family
 - ABox reasoning
 - The tableau algorithm for ALCN a simple example
 - \bullet Further reading: the \mathcal{ALCN} tableau algorithm

The notion of ABox

- The ABox contains assertions about individuals, referred to by individual names a, b, c etc.
 - Convention: concrete individual names are written in ALL_CAPITALS
 - concept assertions: C(a), e.g. Father(ALEX), (\exists hasJob. \top)(BOB)
 - role assertions: R(a, b), e.g. hasChild(ALEX, BOB).
- Individual names correspond to constant symbols of first order logic
- The interpretation function has to be extended:
 - to each individual name a, \mathcal{I} assigns $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- The semantics of ABox assertions is straightforward:
 - \mathcal{I} satisfies a concept assertion C(a) ($\mathcal{I} \models C(a)$), iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$,
 - \mathcal{I} satisfies a role assertion R(a,b) $(\mathcal{I} \models R(a,b))$, iff $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$,
 - \mathcal{I} satisfies an ABox \mathcal{A} ($\mathcal{I} \models \mathcal{A}$) iff \mathcal{I} satisfies all assertions in \mathcal{A} , i.e. for all $\alpha \in \mathcal{A}$, $\mathcal{I} \models \alpha$ holds

Reasoning on ABoxes

- ABox $\mathcal A$ is consistent wrt. TBox $\mathcal T$ if and only if there is an interpretation $\mathcal I$ which satisfies both $\mathcal A$ and $\mathcal T$ i.e. $\mathcal I \models \mathcal A$ and $\mathcal I \models \mathcal T$
- Is the ABox {Mother(S), Father(S)} consistent wrt. an empty TBox?
- Is this ABox consistent wrt. the family TBox (slide 385)?
- Assertion α is said to be a consequence of the ABox \mathcal{A} wrt. TBox \mathcal{T} $(\mathcal{A} \models_{\mathcal{T}} \alpha)$:
 - whenever an interpretation $\mathcal I$ satisfies both the ABox $\mathcal A$ and the TBox $\mathcal T$ ($\mathcal I \models \mathcal A$ and $\mathcal I \models \mathcal T$)
 - α is bound to hold in interpretation \mathcal{I} ($\mathcal{I} \models \alpha$)

Reasoning on ABoxes – example

• Let \mathcal{T} refer to the family TBox from slide 385:

Woman ≡ Person □ ¬Woman

Man = Person □ ¬Woman

Mother ≡ Woman □ ∃hasChild.Person

Father ≡ Man □ ∃hasChild.Person

Parent ≡ Father ⊔ Mother

Grandmother ≡ Woman □ ∃hasChild.Parent

Consider the ABox A:

```
hasChild(SAM, SUE) Person(SAM) Person(SUE) Person(ANN) hasChild(SUE, ANN) Female(SUE) Female(ANN)
```

- Which of the assertions below is a consequence of A wrt. T?
 - Mother(SUE)
 - Mother(SAM)
 - ¬Mother(SAM)
 - Father(SAM)

 - (≤ 1 hasChild)(SAM)

ABoxes and databases

- An ABox may seem similar to a relational database, but
 - Querying a database uses the closed world assumption (CWA): is the query true in the world (interpretation) where the given and only given facts hold?
 - Contrastingly, ABox reasoning uses logical consequence, also called open world assumption (OWA): is it the case that the query holds in all interpretations satisfying the given facts
- At first one may think that with CWA one can always get more deduction possibilities
- However, case-based reasoning in OWA can lead to deductions not possible with CWA (e.g. Susan being optimistic)

Some important ABox reasoning tasks

- Instance check: Decide if assertion α is a consequence of ABox $\mathcal A$ wrt. $\mathcal T$. Example: Check if Mother(SUE) holds wrt. the example ABox $\mathcal A$ and the family TBox on slide 403.
- Instance retrieval:

Given a concept expression C find the set of all individual names x such that $A \models_{\mathcal{T}} C(x)$

Example: Find all individual names known to belong to the concept Mother

The optimists example as an ABox reasoning task

- Our earlier example of optimists:
 - (1) If someone has an optimistic parent, then she is optimistic herself.
 - (2) If someone has a non-optimistic friend, then she is optimistic.
 - (3) Susan's maternal grandfather has her maternal grandmother as a friend.
- Consider the following TBox T:

$$\exists hP.Opt \sqsubseteq Opt \tag{1}$$
$$\exists hF.\neg Opt \sqsubseteq Opt \tag{2}$$

- Consider the following ABox A, representing (3):
 hP(S,SM)
 hP(SM,SMM)
 hP(SM,SMF)
 hF(SMF,SMM)
- An instance retrieval task: find the set of all individual names x such that $A \models_{\mathcal{T}} \mathsf{Opt}(x)$

Contents

- The Semantic Web
 - Introducing Semantic Technologies
 - An example of the Semantic Web approach
 - An overview of Description Logics
 - The ALCN language family
 - TBox reasoning
 - The SHIQ language family
 - ABox reasoning
 - The tableau algorithm for \mathcal{ALCN} a simple example
 - \bullet Further reading: the \mathcal{ALCN} tableau algorithm

Tableau algorithms

- Various TBox and ABox reasoning tasks have been presented earlier
- In ALC and above, any TBox task can be reduced to checking satisfiability
- Principles of the ALCN tableau algorithm
 - It checks if a concept is satisfiable, by trying to construct a model
 - Uses NNF, i.e. "¬" can appear only in front of atomic concepts
 - The model is built through a series of transformations
- The data structure representing the model is called the tableau (state):
 - a directed graph
 - the vertices can be viewed as the domain of the interpretation
 - edges correspond to roles, each edge is labelled by a role
 - vertices are labelled with sets of concepts, to which the vertex is expected to belong
- Example: If a person has a green-eyed and a blonde child, does it follow that she/he has to have a child who is both green-eyed and blonde?
- Formalize the above task as a question in the Description Logic ALC: Does the axiom $(\exists hC.B) \sqcap (\exists hC.G) \sqsubseteq \exists hC.(B \sqcap G) \text{ hold?}^6$

⁶(hC = has child, B = blonde, G = green-eyed)

An introductory example, using ALC

- Question: Does the axiom (∃hC.B) □ (∃hC.G) □ ∃hC.(B □ G) hold?
- Transform to an **un**satisfiability task ($U \sqsubseteq V \Leftrightarrow U \sqcap \neg V$ is **not** satisfiable): $C = (\exists hC.B) \sqcap (\exists hC.G) \sqcap \neg (\exists hC.(B \sqcap G))$ is not satisfiable
- The neg. normal form of C is: $C_0 = (\exists hC.B) \sqcap (\exists hC.G) \sqcap \forall hC.(\neg B \sqcup \neg G)$
- Goal: build an interpretation \mathcal{I} such that $C_0^{\mathcal{I}} \neq \emptyset$. Thus we try to have a bsuch that $b \in (\exists hC.B)^{\mathcal{I}}, b \in (\exists hC.G)^{\mathcal{I}}, \text{ and } b \in (\forall hC.(\neg B \sqcup \neg G))^{\mathcal{I}}.$
- From $b \in (\exists hC.B)^{\mathcal{I}} \implies \exists c \text{ such that } \langle b, c \rangle \in hC^{\mathcal{I}} \text{ and } c \in B^{\mathcal{I}}.$ Similarly, $b \in (\exists hC.G)^{\mathcal{I}} \Longrightarrow \exists d$, such that $\langle b, d \rangle \in hC^{\mathcal{I}}$ and $d \in G^{\mathcal{I}}$.
- As b belongs to $\forall hC.(\neg B \sqcup \neg G)$, and both c and d are hC relations of b, we obtain constraints: $c \in (\neg B \sqcup \neg G)^{\mathcal{I}}$ and $d \in (\neg B \sqcup \neg G)^{\mathcal{I}}$.
- $c \in (\neg B \sqcup \neg G)^{\mathcal{I}}$ means that either $c \in (\neg B)^{\mathcal{I}}$ or $c \in (\neg G)^{\mathcal{I}}$. Assuming $c \in (\neg B)^{\mathcal{I}}$ contradicts $c \in B^{\mathcal{I}}$. Thus we have to choose the option $c \in (\neg G)^{\mathcal{I}}$. Similarly, we obtain $d \in (\neg B)^{\mathcal{I}}$.
- We arrive at: $\Delta^{\mathcal{I}} = \{b, c, d\}$; $\mathsf{hC}^{\mathcal{I}} = \{\langle b, c \rangle, \langle b, d \rangle\};$ $\mathsf{B}^{\mathcal{I}} = \{c\} \text{ and } \mathsf{G}^{\mathcal{I}} = \{d\}.$ Here $b \in C_0^{\mathcal{I}}$, thus (1) does not hold.

Extending the example to \mathcal{ALCN}

 Question: If a person having at most one child has a green-eyed and a blonde child, does it follow that she/he has to have a child who is both green-eyed and blonde?

- Reformulation: "Is C not satisfiable?", where $C = (\leq 1hC) \sqcap (\exists hC.B) \sqcap (\exists hC.G) \sqcap \neg (\exists hC.(B \sqcap G))$
- Negation normal form: $C_0 = (\leq 1 \text{hC}) \sqcap (\exists \text{hC}.\text{B}) \sqcap (\exists \text{hC}.\text{$

$$C_0 = (\leqslant 1 \text{hC}) \sqcap (\exists \text{hC.B}) \sqcap (\exists \text{hC.G}) \sqcap \forall \text{hC.}(\neg B \sqcup \neg G))$$

We first build the same tableau as for (1):

- From $(\leq 1hC)(b)$, hC(b, c), and hC(b, d) it follows that c = d has to be the case. However merging c and d results in an object being both B and $\neg B$ which is a contradiction (clash)
- Thus we have shown that C_0 cannot be satisfied, and thus the answer to question (2) is yes.

Contents

- The Semantic Web
 - Introducing Semantic Technologies
 - An example of the Semantic Web approach
 - An overview of Description Logics
 - ullet The \mathcal{ALCN} language family
 - TBox reasoning
 - The SHIQ language family
 - ABox reasoning
 - The tableau algorithm for ALCN a simple example
 - \bullet Further reading: the \mathcal{ALCN} tableau algorithm

The \mathcal{ALCN} tableau algorithm for empty TBoxes – outline

- Is C satisfiable?" ⇒ Let's build a model satisfying C, exhaustively.
- First, bring C to negation normal form C₀.
- The main data structure, the tableau structure $T = (V, E, \mathcal{L}, I)$ where (V, E, \mathcal{L}) is a finite directed graph (more about I later)
 - Nodes of the graph (V) can be thought of as domain elements.
 - ullet Edges of the graph (E) represent role relationships between nodes.
 - ullet The labeling function ${\cal L}$ assigns labels to nodes and edges:
 - $\forall x \in V$, $\mathcal{L}(x) \subseteq sub(C_0)$, the set of subexpressions of C_0
 - $\forall \langle x, y \rangle \in E$, $\mathcal{L}(\langle x, y \rangle)$ is a role within C (in \mathcal{SHIQ} : set of roles)
 - The initial tableau has a single node, the root: $(\{x_0\}, \emptyset, \mathcal{L}, \emptyset)$, where $\mathcal{L}(x_0) = \{C_0\}$. Here C_0 is called the root concept.
- The algorithm uses transformation rules to extend the tableau
- Certain rules are nondeterministic, creating a choice point; backtracking occurs when a trivial clash appears (e.g. both A and $\neg A \in \mathcal{L}(x)$)
- If a clash-free and complete tableau (no rule can fire) is reached \Longrightarrow C is satisfiable.
- When the whole search tree is traversed \implies *C* is not satisfiable.

Outline of the \mathcal{ALCN} tableau algorithm (2)

- The tableau tree is built downwards from the root (edges are always directed downwards)
 - A node b is called an R-successor (or simply successor) of a iff
 there is an edge from a to b with R as its label, i.e. L((a,b)) = R
- Handling equalities and inequalities
 - To handle ($\leq nR$) we need to merge (identify) nodes
 - In handling ($\geqslant nR$) we will have to introduce nR-successors which are pairwise non-identifiable ($x \neq y$: x and y are not identifiable)
 - The component *I* of the tableau data structure $T = (V, E, \mathcal{L}, I)$ is a set of inequalities of the form $x \neq y$

Transformation rules of the \mathcal{ALCN} tableau algorithm (1)

□-rule

Condition: $(C_1 \sqcap C_2) \in \mathcal{L}(x)$ and $\{C_1, C_2\} \not\subseteq \mathcal{L}(x)$

New state T': $\mathcal{L}'(x) = \mathcal{L}(x) \cup \{C_1, C_2\}.$

⊔-rule

Condition: $(C_1 \sqcup C_2) \in \mathcal{L}(x)$ and $\{C_1, C_2\} \cap \mathcal{L}(x) = \emptyset$.

New state T₁: $\mathcal{L}'(x) = \mathcal{L}(x) \cup \{C_1\}.$

New state T₂: $\mathcal{L}'(x) = \mathcal{L}(x) \cup \{C_2\}.$

∃-rule

Condition: $(\exists R.C) \in \mathcal{L}(x)$, x has no R-successor y s.t. $C \in \mathcal{L}(y)$.

New state T': $V' = V \cup \{y\}$ (y is a new node),

 $E' = E \cup \{\langle x, y \rangle\}, \mathcal{L}'(\langle x, y \rangle) = R, \mathcal{L}'(y) = \{C\}.$

∀-rule

Condition: $(\forall R.C) \in \mathcal{L}(x)$, x has an R-successor y s.t. $C \notin \mathcal{L}(y)$.

New state T': $\mathcal{L}'(y) = \mathcal{L}(y) \cup \{C\}.$

Transformation rules of the ALCN tableau algorithm (2)

>-rule

Condition: $(\geqslant n\,R)\in\mathcal{L}(x)$ and x has no n R-successors such that any two are non-identifiable.

New state T': $V' = V \cup \{y_1, \dots, y_n\}$ (y_i new nodes),

 $E' = E \cup \{\langle x, y_1 \rangle, \dots, \langle x, y_n \rangle\},\$

 $\mathcal{L}'(\langle x, y_i \rangle) = R, \mathcal{L}'(y_i) = \emptyset$, for each $i = 1 \le i \le n$,

 $I' = I \cup \{y_i \neq y_i \mid 1 \leq i < j \leq n\}.$

Transformation rules of the ALCN tableau algorithm (3)

<-rule</p>

Condition: $(\leqslant nR) \in \mathcal{L}(x)$ and x has R-successors y_1, \ldots, y_{n+1} among which there are at least two identifiable nodes.

For each i and j, $1 \le i < j \le n+1$, where y_i and y_i are identifiable:

New state
$$T_{ij}$$
: $V' = V \setminus \{y_j\}, \, \mathcal{L}'(y_i) = \mathcal{L}(y_i) \cup \mathcal{L}(y_j),$

$$E' = E \setminus \{\langle x, y_j \rangle\} \setminus \{\langle y_j, u \rangle | \langle y_j, u \rangle \in E\} \cup \{\langle y_i, u \rangle | \langle y_j, u \rangle \in E\},$$

$$\mathcal{L}'(\langle y_i, u \rangle) = \mathcal{L}(\langle y_j, u \rangle), \, \forall u \text{ such that } \langle y_j, u \rangle \in E,$$

$$I' = I[y_i \to y_i] \text{ (every occurrence of } y_i \text{ is replaced by } y_i).$$

The \mathcal{ALCN} tableau algorithm – further details

- There is clash at some node x of a tableau state iff
 - $\{\bot\}\subseteq \mathcal{L}(x)$; or
 - $\{A, \neg A\} \subseteq \mathcal{L}(x)$ for some atomic concept A; or
 - $(\leqslant nR) \in \mathcal{L}(x)$ and x has R-successors y_1, \ldots, y_{n+1} where for any two successors y_i and y_i it holds that $y_i \neq y_i \in I$.
- A tableau state is said to be complete, if no transformation rules can be applied at this state (there is no rule the conditions of which are satisfied)

The \mathcal{ALCN} tableau algorithm

In this version the algorithm handles a set of tableau states, one for each yet unexplored subtree of the search space.

- Intialise the variable States = $\{T_0\}$ (a singleton set containing the initial tableau state)
- ② If there is $T \in \mathtt{States}$ such that T contains a clash, remove T from \mathtt{States} and continue at step 2
- $lacktriangledisplays If there is <math>T \in \mathtt{States}$ such that T is complete (and clash-free), exit the algorithm, reporting satisfiability
- If States is empty, exit the algorithm, reporting non-satisfiability
- **③** Choose an arbitrary element $T \in S$ tates and apply to T an arbitrary transformation rule, whose conditions are satisfied (don't care nondeterminism). Remove T from States, and add to States the NewStates resulting from the applied transformation, where NewStates = $\{T_1, T_2\}$ for the \sqcup -rule, NewStates = $\{T_{ij} | \cdots \}$ for the \leq -rule, and NewStates = $\{T'\}$ for all other (deterministic) rules. Continue at step 2

 $^{^7}$ Such a tableau state **T** and such a rule exist, because States is nonempty, and none of its elements is a complete tableau

The \mathcal{ALCN} tableau algorithm – an example

• Consider checking the satisfiability of concept C_0 (hC = has child, B = blonde):

$$\begin{array}{lll} C_0 & = & C_1 \sqcap C_2 \sqcap C_3 \sqcap C_4 \\ C_1 & = & (\geqslant 2 \, \text{hC}) \\ C_2 & = & \exists \text{hC.B} \\ C_3 & = & (\leqslant 2 \, \text{hC}) \\ C_4 & = & C_5 \sqcup C_6 \\ C_5 & = & \forall \text{hC.} \neg \text{B} \\ C_6 & = & \text{B} \end{array}$$

- The tableau algorithm completes with the answer: concept C_0 is satisfiable
- The interpretation constructed by the tableau algorithm: $\Delta^{\mathcal{I}} = \{b, c, d\}; \mathsf{hC}^{\mathcal{I}} = \{\langle b, c \rangle, \langle b, d \rangle\}; \mathsf{B}^{\mathcal{I}} = \{b, c\}$

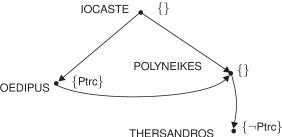
Extending the tableau algorithm to ABox reasoning

 To solve an ABox reasoning task (with no TBox), we transform the ABox to a graph, serving as the initial tableau state, e.g. for the IOCASTE family ABox:

```
hC(IOCASTE, OEDIPUS)
hC(OEDIPUS, POLYNEIKES)
Ptrc(OEDIPUS)
```

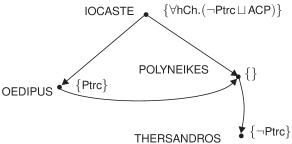
hC(IOCASTE, POLYNEIKES) hC(POLYNEIKES, THERSANDROS) (¬ Ptrc) (THERSANDROS)

 Individual names become nodes of the graph, labelled by a set of concepts, and each role assertion generates an edge, labelled (implicitly) by hC:



Handling ABox axioms in the tableau algorithm (ctd.)

- Given the locaste ABox, we want to prove that IOCASTE is special, i.e. she belongs to the concept $\exists hC.(Ptrc \sqcap \exists hC.\neg Ptrc)$
- We do an indirect proof: assume that IOCASTE is not special, i.e. IOCASTE belongs to $(\forall hC.(\neg Ptrc \sqcup \forall hC.Ptrc))$ (1)
- Let's introduce an abbreviation: ACP = ∀hC.Ptrc
- To prove that locaste is special, we add concept (1) to the IOCASTE node:



The tableau algorithm, with this initial state, will detect non-satisfiability

Handling TBox axioms in the tableau algorithm

- An arbitrary ALCN TBox can be transformed to a set of subsumptions of the form $C \sqsubseteq D$ ($C \equiv D$ can be replaced by $\{C \sqsubseteq D, D \sqsubseteq C\}$)
- $C \sqsubseteq D$ can be replaced by $\top \sqsubseteq \neg C \sqcup D$ cf. $(\alpha \to \beta)$ is the same as $(\neg \alpha \lor \beta)$
- An arbitrary TBox $\{C_1 \sqsubseteq D_1, C_2 \sqsubseteq D_2, \dots, C_n \sqsubseteq D_n\}$ can be transformed to a single equivalent axiom: $\top \sqsubseteq C_{\mathcal{T}}$, where

$$C_{\mathcal{T}} = (\neg C_1 \sqcup D_1) \sqcap (\neg C_2 \sqcup D_2) \sqcap \cdots \sqcap (\neg C_n \sqcup D_n).$$

- Concept C_T is called the internalisation of TBox T
- An interpretation \mathcal{I} is a model of a TBox \mathcal{T} ($\mathcal{I} \models \mathcal{T}$) iff each element of the domain belongs to the $C_{\mathcal{T}}$ internalisation concept
 - This observation can be used in the tableaux reasoning algorithm, which tries to build a model
 - ullet To build a model which satisfies the TBox ${\mathcal T}$ we add the concept ${\mathcal C}_{{\mathcal T}}$ to the label of each node of the tableau

Handling TBoxes in the tableau algorithm – problems

- Example: Consider the task of checking the satisfiability of concept Blonde wrt. TBox {⊤ ⊆ ∃hasFriend.Blonde}
 - Concept ∃hasFriend.Blonde will appear in each node
 - thus the \exists -rule will generate an infinite chain of hasFriend successors
- To prevent the algorithm from looping the notion of blocking is introduced.

Blocking

- Definition: Node y is blocked by node x, if y is a descendant of x and the blocking condition $\mathcal{L}(y) \subseteq \mathcal{L}(x)$ holds (subset blocking).
- When y is blocked, we disallow generator rules
 (∃- and ≥-rules, creating new successors for y)
- This solves the termination problem, but raises the following issue
 - How can one get an interpretation from the tableau?
 - Solution (approximation, for \mathcal{ALC} only): identify blocked node y with blocking node x, i.e. redirect the edge pointing to y so that it points to
 - x. This creates a model, as
 - all concepts in the label of y are also present in x
 - thus x belongs to all concepts y is expected to belong to
- Is Happy □ Blonde satisfiable wrt. TBox {□ ∃hasFriend.Blonde}?

```
x o {Happy, Blonde, \existshasFriend.Blonde} hasFriend | y o {Blonde, \existshasFriend.Blonde}
```

- x blocks y, the tableau is clash-free and complete
- The model:

$$\Delta^{\mathcal{I}} = \{x\}; \mathsf{Happy}^{\mathcal{I}} = \{x\}; \mathsf{Blonde}^{\mathcal{I}} = \{x\}; \mathsf{hasFriend}^{\mathcal{I}} = \{\langle x, x \rangle\}$$